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ABSTRACT 

Recent work by Peng ("Nonlinear Multiaxial Finite Deformation 

Investigation of Solid Propellants", S.T.T. Peng, AFRDL. TR-85-036) 

has shown that the use of separable symmetric functions of the principal 

stretches can adequately describe the response of certain propellant 

materials. and, further, that a data reduction scheme given by him 

gives a convenient way of obtaining the values of the functions from 

experimental data. Based on Peng's representation of the energy, a 

computational scheme has been developed that allows finite element 

analysis of boundary value problems of arbitrary shape and loading. 

The computational procedure has been implemental in a three-dimen- 

sional finite element code, TEXLESP-S, which is documented in this 

report. 
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1.0 INTRODUCTION 

The finite element analysis of large elastic strain 

problems has been reported by many researchers, see for 

example, Oden [l] , Cescotto and Fonder [ 2 ] ,  Aly [ 3 ] ,  

Miller [ 4 ]  Hubbitt et al. [SI and Becker et al. [6]. The 

constitutive relations employed in all of these works is a 

strain energy density which is taken as a function of the 

principal invariants of strain (technically, of the left 

Cauchy-Green deformation tensor 1 .  No doubt the fondness 

exhibited toward this approach dates from the early work 

of Rivlin, in which it was shown that such forms of the 

energy function are acceptable for any isotropic hyper- 

elastic material. In fact, most published reports of 

hyperelastic solutions employ a very simple form of the 

energy that was introduced by Mooney and has come to be 

known as the Mooney-Rivlin energy function. It is well 

known that this form of the energy describes the behavior 

of real rubber over only a very limitted range of deforma- 

tions, but, due to its simple form (only two constants are 

required to specify the Mooney material) or, perhaps, due 

to the association with Rivlins fundamental work in rubber 

elasticity, the Mooney-Rivlin function continues to be 

used extensively. It is worth noting that the simplicity 

of form, while extremely valuable in the construction of 

analytical solutions to boundary value problems, is of but 

minimal significance in finite element work. 
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Viewed in the large, the stress analysis of any 

problem involves not only the finite element calculations 

used to satisfy equilibrium and boundary conditions but 

also the determination of a constitutive relation appli- 

cable to the material. 

The characterization problem includes determining, 

from experimentally obtained data, both the mathematical 

form of the energy function and the value of the parame- 

ters (“material constants”) embedded in these forms. 

While theoretically convenient, the strain invariants 

are far from ideal choices of constitutive variables when 

viewed from the point of view of experimental determina- 

tion of the constitutive form. Literally dozens of forms 

of the energy function, with strain invariants as argu- 

ments, have been proposed in the literature. The ration- 

ales for these are empirical rather than physical - 
material science considerations offer no guide to the 

form. The most common form is a polynomial in the strain 

invariants with the coefficients determined by least 

squares fitting to whatever data are available. Since any 

reasonable function can be approximated by a polynomial, 

so the argument goes, this simplistic approach should, in 

principle, be adequate. Unfortunately, polynomial inter- 

polation invariably produces oscillatory behavior in the 

function and, especially, in its derivatives. Since it is 

the first and second Serivatives of the energy that are 
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required in any computational procedure, the high order 

polynomials required to give adequate fits to real material 

behavior over large ranges of deformation do not work well 

in practice. 

The use of principal stretches as arguments of the 

energy function has been proposed by, for example Valanis 

and Landell [7], Ogden [ 8 ]  and Peng [9]. When the 

stretches are chosen as constitutive variables, an assump- 

tion can be made that reduces the difficulty of the char- 

acterization problem. Using the assumption of separabil- 

ity, Ogden, for example, has been able to fit a wide range 

of rubber deformations using fairly simple mathematical 

forms of the energy function. Ogden's characterization, 

however, requires the choice of some parameters on an 

intuitive basis. 

The approach to material characterization taken here 

differs from previously reported approaches in that no 

mathematical form of the energy function is postulated. 

Since only the values of the derivatives of the energy and 

not form of the function, are needed for computation, we 

avoid the restrictions inherent in the choice of a 

particular mathematical form. 

interpolated experimental data we calculate points on a 

curve that defines the material response. These points 

are supplied as input data to the finite element analysis 

code. Our procedure, thereby, provides the most direct 

and straight forward use of experimental data for the 

Working directly with 
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solution of boundary value problems. The details of this 

procedure are given in Section 2. 

The finite element code, TEXLESP-S developed in the 

present effort utilizes components of the code TEXGAP3D, 

which is described in reference [lo]. The modelling 

capability is identical to that of TEXGAP3D and almost all 

of the data are identical. The hyperelastic calculations 

are based on proceedures developed by Aly in reference 

[ 3 ] ,  but modified to allow the use of the separable energy 

function of principal stretches. The use of TEXLESP-S is 

described in Section 3 .  

2.0 THEORETICAL DEVELOPMENT 

The theory of large elastic deformations was essen- 

tially set forth by Rivlin in the late 1940's. Notations 

have changed and the use of finite element techniques has 

shifted the emphasis but the theoretical foundations are 

unchanged. The major change in emphasis is the use of 

variational principles (principle of virtual work, for 

example) to satisfy equilibrium requirements and the 

accompanying use of Lagrange multiplier methods to accom- 

modate the incompressibility condition. 

In the following sections we review the notation and 

description of deformation, Section 2.1; the constitutive 

relations on which this work is based, Section 2.2;  the 
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variational formulation of the boundary value problems, 

Section 2.3 and the finite element implementation of the 

theory, Section 2 .4 .  

2.1 Kinematics of Deformation 

Let X denote the position of a material particle - 
in the undeformed (and unstressed) reference configuration 

of a body whose deformation is to be studied. At some 

later time, t , as the body is deformed by applied loads, 

the particle originally at X moves to a new position 

x . The problem to be solved is the determination for a 
fixed time, the value of x for every particle, X , in 
the body consistent with the requirement that each part of 

- 
- 

- - 

the body be in equilibrium with applied loads. We con- 

sider only slow variation in the loads, so that inertia is 

not important, and elastic behavior, so that the history 

of deformation is not important. Thus, time appears in 

all equations only as a parameter identifying which set of 

loads an8 deformations are being studied. It will be 

convenient to replace time, then, with another parameter, 

P , which we shall call the load factor. The load factor 

will vary, under control of the analyst, from a value of 

zero in the reference configuration through whatever 

positive values are of interest. When the load factor has 

a value of unity, the loads acting on the body will have 

what we shall call their nominal values. We note that 
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since all loads are scaled by the same parameter we are 

restricting attention to proportional loading. 

The motion of the body is described mathematically by 

the function (unknown, a priori) 

from which we shall generally omit the dependence on load 

factor p . 
In an elastic material, the stress at a particle X - 

depends only on the difference between the shape of an 

infinitesimally small portion of the body around X and 

the shape of this same portion in the reference configura- 

tion. If dS denotes a line element in the reference 

configuration (at particle XI and ds denotes the de- 

formed configuration of this element, then the relation 

- 

0 

0 0 

between these is given by 

ds = F dS 
0 0 0  

where the deformation gradient F is calculated as 
0 

ax 

The determinant of the deformation gradient, F , 
plays an important role in the kinematics of deformation. 

Direct calculation shows that the ratio of the volume 

- 

contained in a deformed material region dv to the volume 
.~ 
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of 

is 

the same material in the reference configuration dV 

given by 

dv - = detlF1 = J dV - ( 4 )  

This determinant, denoted by J , is often callled the 
Jacobian determinant of the deformation or, simply, the 

Jacobian. Clearly, for all physically acceptable defor- 

mations J > 0 and for isochoric (i.e., volume preserv- 

ing) deformations as must occur in incompressible mater- 

ials, J = 1 . 
Since the change in shape of the infinitesimal part 

of the body surrounding the particle X is completely 

determined by the knowledge of the changes of all the line 
- 

segments emanating from the particle, it is clear that F 

contains all of the information required. In fact, F' 

contains not only the description of changes in shape of 

- 
- 

the neighborhood of X , but also changes in its orienta- 
tion, since a rigid body rotation of the neighborhood 

- 

would change each dS into a ds with the same length 

but a different direction. A useful theorem of linear 
- - 

algebra (the polar decomposition theorem) assures us that 

F can be factored in such a way that the rigid body 

rotation and stretching parts of the deformation are 
- 

separate, Thus, 

F = RU - - -  ( 5 )  



Since r i g i d  body r o t a t i o n  does not  affect  t h e  stress, 

we  are i n t e r e s t e d  i n  t h e  s t r e t c h  t e n s o r  U . Although t h e  

p o l a r  decomposition theorem a s s u r e s  t h e  e x i s t e n c e  o f  U , 
it does no t  o f f e r  a convenient way t o  determine it. But 

s i n c e  

t e n s o r  C , def ined  by (6), depends only on t h e  s t r e t c h e s .  

- 
- 

R r e p r e s e n t s  a r i g i d  r o t a t i o n ,  R - l  = RT , t h e  - 0 0 

- 
T T T  T 2 C = F F = U R RU = U U E U 

Clea r ly ,  C i s  a u s e f u l  measure of t h e  stress producing 

deformation o f  t h e  neighborhood of t h e  m a t e r i a l  surround- 

i n g  t h e  p a r t i c l e  X . Another measure of t h i s  deformation 

(not  used he re )  i s  t h e  Green s t r a i n  t e n s o r ,  de f ined  a s  

0 

- 

The t e n s o r  C i s  symmetric, and, t h e r e f o r e ,  has  r e a l  

p r i n c i p a l  va lues ,  

i = 1, 2 ,  3, then  t h e  c h a r a c t e r i s t i c  equat ion  of C i s  

I f  t h e s e  va lues  are denoted, s ay ,  pi , 

0 

3 + 1 2 y 2  - J 2 = 0 IJ - IllJ (7) 

I n  (7), 11, I2 and J2 are t h e  t h r e e  p r i n c i p a l  i n v a r i -  

a n t s  of C . The t h i r d  of t h e s e  i s  w r i t t e n  he re  as  

I3 = J' 

square of t h e  Jacobian. 

0 

3 
emphasizing the fact  t h a t  it i s  equa l  t o  t h e  

Since J > 0 , t h e  tensor  C i s  p o s i t i v e  d e f i n i t e ,  - 
> 0 i = 1, 2,  3 . Recal l ing  t h e  l a s t  d e f i n i t i o n  I J i  i .e. , 

i n  (61 ,  w e  denote t h e  eigenvalues  o f  C by A 2  r a t h e r  

than  IJ . The i n t e r p r e t a t i o n  o f  t h e  Ai  i s  t h a t  t hey  a r e  
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the principal values of ,he stretch tensor U or, simply, 

the principal stretches. Rewriting (7) as 
- 

( 8 )  
2 ( A 2 I 3  - I1(A2l2 + IZ(A ) - I3 = 0 

clearly shows that a knowledge of the three principal 

invariants 11, 12, and I3 implies a knowledge of the 

three principal stretches X1, X2, X 3  and vice versa. 

Thus, either set of quantities can, in principle, be used 

to describe the stress-producing aspect of a deformation. 

The geometric interpretation of the tensors F , R 
and U and of the principal stretches are shown, for a 

two-dimensional case, in Figure 1. The circular neigh- 

0 0 

0 

borhood, N , surrounding X is shown in Figure la. Three 

line elements through X are shown. These are labeled 1, 

2 and 3 .  Lines 1 and 2 are in the principal directions of 

* 

- 

the stretch tensor U , while 3 is simply another, arbi- 

trarily chosen, line segment. The deformed configuration 
- 

of the neighborhood, n , is depicted in Figure lb. We 

note that, in general, all of the line elements in N 

have been rotated and stretched (or compressed). This is 

the result of the deformation described by ( 2 ) ,  and we say 

that F carries N into n . If the diameter of N is 
0 

taken as unity, then the lengths of linear segments 1 and 

2 in configuration n (Fig. lb) are AI and A z  . These 
are the values of stretch (ratio of deformed to undeformed 

length) for those line elements that get stretched the 

most and least of all line segments through the point X . - 
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Figure IC shows the configuration of neighborhood N 

that would be produced purely by the stretching part of 

F , had no rigid body rotation occurred. If we denote 

this s , we say that U carries N into while R 

carries n into n . We note that there is no rotation 

of the principal line elements, 1 and 2, produced by U 

and that there are no length changes of any line elements 

produced by R . 

0 

. 0 - 

0 

0 

2.2 Constitutive Equations 

We consider only isotropic, incompressible hyper- 

elastic materials. For this class of materials, the 

stresses are determined, to within a hydrostatic pressure, 

from a scalar function called the strain energy density 

function or, simply, the energy function. In most of the 

published work on rubber elasticity, the energy is written 

as a function of the principal invariants as 

u = U(I1, 12, 13) 

The Cauchy stress (traction per unit of area in the de- 

formed configuration) is, in terms of the function U(Il, 

12, 13) 

Q = 2[(UV1 + I U )B - U B2] + p1 1 , 2  0 I20 - 
- au 
- aI: where 

B F F ~  

I is the identity 

p is the hydrostatic pressure 
0 
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In this work, we choose to express the energy func- 

tion, not explicitly as a function of the invariants, but, 

rather, following Valanis and Landel, as a separable 

function of the principal stretches. Thus, we write 

The Cauchy stress fo r  an incompressible material for 

which (11) holds is given by 

(12) i 3 
u = 1 xi w' (xi) ni x n + PI 

In (12)' 

i=l - - 0 

ni is the unit vector in the direction of 
0 

the principal stretch Xi . 
For the solution of the equilibrium equations (as 

will be seen in section 2.4), we shall need the first and 

second derivatives of the energy function with respect to 

the invariants. If we were using the form IS), this cal- 

culation could be made easily and explicitly, but when 

using (11) as our constitutive assumption, we proceed as 

follows. 

Let 

denote the derivatives of the energy with respect to the 

three invariants 11, I2 and I3 2 J . A l s o ,  let 2 

a 'k - a 2 ~ k  
and 'k,ij = 

- 
1 3  

Ik,i = 1 (14) 
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denote the derivatives of the invariants with respect to 

the principal stretches. The derivatives in (14) are 

readily calculated from 
2 2 

3 = A1 + x2 + A I1 2 

I2 = x 2 2  x + x2x3 2 2  + +; 1 2  

and the results can be written concisely as 

Il,i = 2xi = 26 I18ij ij 

Jli = J/Xi 

(15) 

2 2(11 - Ai) i#j 2 I2,i = 2Ai(11 - Xi) 
128ij = [4x.x =I i= j 

(16) 

Equating (9). and (11) and differentiating the result 

with respect to Ai gives three equations for the 

We note that for known values of the Xi the coefficients 

in (17) are evaluated using (16). For a given function 'k8i 
w(X) we obtain the derivative w' (Ai) by the process 

described below. Thus, equations (17) are three linear 

algebraic equations that are solved for the required 

values of U . 8k 
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are obtained in a way 
,k2 

The second derivatives U 

similar to that just described. Differentiating (17) this 

time with respect to we obtain 
j 

',k2 I k,i '2,j + u  ,k I k,ij = (wl (Xi)) 'j 

i,j = 1, 2, 3 (18) 

Equations (18) are six linear algebraic equations for the 

determination of the values of 

values of the first derivatives U must be found by 

solving (17) before equations (18) can be formed. 

UIka . 
,k 

We note that the 

When two (or three) of the principal stretches are 

identical, then (17) and (18) are singular, and special 

care must be taken with the degenerate systems. This is 

an exceptional situation that almost never occurs in the 

solution of boundary value problems. TEXLESP-S contains 

adequate provisions to detect and to deal with the 

singular cases. 

In our implementation, values of the function w'(X) 

are input at several values of X . A typical curve 

defined by these data is in Figure 57 of Peng's report 

[9]. Values of w' must be calculated by interpolation 

for use in (17) and values of w" must be calculated for 

use in (18). The functional values of w' must be smooth 

so that w" will be continuous for all values of X or 

else the tangent stiffness matrix (see eqs. (7) and (10) 

in Section 2.4) canno& be calculated. To assure smooth 

variation of J '  with respect to X , we fit the data 
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with cubic splines (using Hermite polynomial interpolating 

functions between data points). 

2.3 Finite Element Formulation 

The finite element formulation is based on the princi- 

ple of virtual work, which is written as 

I 6U dV = I f.6x dV + I t-6x dS 
n n an 

(19) 

In (191, the notation is defined as follows: 

6U is the variation of the energy function with 

respect to the current position x 

f is the vector of body force densities 

t is the vector of surface tractions 

6x 

n is the interior of the body in the reference 

is the variation of current position 

configuration 

an is the boundary of the body in the reference 

configuration. 

We note that the boundary of the body is, in general 

composed of a portion, say 

t , are given and a portion, , on which the deformed 
position fo the material is given (and on which the 

traction is unknown but on which the variation of posi- 

tion, 6x , vanishes). Thus, the region of integration of 

ant , on which the tractions, 

X 

the surface integral can be taken simply as ant . 
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Satisfaction of (19) for all suitably smooth bx 

guarantees equilibrium (in a variational or weak sense). 

In order that the deformation be isochoric (i.e.8 that the 

incompressibility of the material be satisfied), we must 

add to (19) the condition that J - 1 = 0 . This is 

accomplished using Lagrange's method of multipliers. The 

result is the modified principle of virtual work 

I 6 ( U  + p(J-1))dV = I f-bxdv + 1 t*bxdS (20) 
n ant n 

Here, p, the Lagrange multiplier, is the hydrostatic 

pressure occurring in the constitutive equation (10). We 

rewrite the left-hand member (20) as 

n 
and note that the variation is with respect to p as well 

as with respect to x and that the function now depends 

on J . 
The body is represented by an assemblage of finite 

elements. The geometry of each element is defined by the 

coordinates of the nodal points connected to it and by a 

set of functions called shape functions, denoted by 

N (si) i = 1, 2 ,  3 .  The parameters si are called the 

parametric coordinates of the material particles contained 

in an element and can be thought of as describing the 

location of a point in a master element. Typically, the 

si 

a 

range over a simple interval such as -1 S si 5 1 . 
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In TEXLESP-S, the element library consists of 20 node 

bricks, 15 node triangular prisms and 10 node tetrahedra. 

The details of these elements can be found in, for  

example, the book by Zienciewicz [ll] or the TEXGAP3D 

reference manual [lo]. The shape functions in each type 

of element are quadratic functions of the si. 
All integrals in the virtual work statement and its 

consequences are evaluated by numerical quadrature 

element-by-element. Thus, all calculations required in 

the following development are performed at certain fixed 

points within an element called integration points. Once 

the finite element discretization is made, there are no 

longer any functions of position (either known or unknown) 

and the only undetermined parameters are the nodal point 

values of position, x , and pressure, p . 
Explicitly, the reference position of a point, the 

deformed position and the pressure at a point are given by 

the following 

a a  Xi = N Xi 

a a  xi = N xi 

i =  1, 2 ,  3 

a = 1, 2, . . . Node ( 2 2 )  

8 = 1, 2 ,  3 ,  4 8 8  P = M P  

Similarly, the variation of the components of x and of 

p are given by 
- 



For convenience in the following, we will let u stand 

for the entire set of nodal quantities, including both x i 
and p8 where a ranges over all nodes in the model, and 

- 
0 

6 ranges from 1 to 4 for each element of the model. 

Similarly, other quantities with a sub-tilde, e.g., I , 
will denote vectors with a corresponding number of com- 

ponents. 

- 

Double sub-tildes will denote square *matrices of 

compatible size. 

When the finite element discretizations (22) and (23) 

are substituted into the modified principle of virtual 

work, the results can be written as 

6u T I = 6u T F 
- 0  0 -  

in which 

F = \ f*NdV + I toNdS 
n a0 

The equilibrium equation (24), which is really a vector 

equation with one component for each degree of freedom in 

the problem, is nonlinear since I = I(u, p) is highly 

nonlinear. The solution of this system of equations is 
0 - 

accomplished by means of incremental loading combined with 
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Newton iteration. As noted in Section 2.1, we consider 

proportional loading so that we can write f = pf and 

t = pt for the applied loads. Using these conventions in 

( 2 5 ) ,  we obtain the .obvious modification of ( 2 4 )  

A 

A 

A 

I = pF 
0 0 

( 2 6 )  

for the equilibrium equations. The incremental loading 

procedure consists of proceeding from a value of p at 

which ( 2 6 )  is satisfied to an incremented value, say 

p + AD , and attempting to satisfy ( 2 6 )  again. The first 

step in this consists of a linearization of ( 2 6 )  about the 

current value, i.e., 

from which we obtain as the incremental equation 

This set of linear equations has as its coefficient matrix 

the tangent stiffness K defined as - - 

We note that it is the evaluation of this matrix and of 

the vector I(u) on the right-hand side of ( 2 6 )  that 
0 -  

requires the bulk of the calculations in TEXLESP-S. 
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In the first step of solving for a new load increment 

K and I are evaluated at the previous configuration and 

the change in position Au is found by solving (26). 

This solution is accomplished in TEXLESP-S using a frontal 

- - - 
0 

elimination routine. In general, the incremented state 

u1 = u + Au 
say, the residual 

will not satisfy equilibrium, that is to - - 0 

will not be zero. To improve on the solution, we linear- 

ize again -- this time about the configuration u . This 

process is 

1 
0 

and is repeated until the correction du becomes less 

than some acceptable tolerance. 
0 

In practice, the user of TEXLESP-S specifies a 

sequence of load factors, say 

tolerance for the convergence of the du . For each load 

step, the solution, u , is saved on file. Post-process- 

ing, i.e., stress calculation, printing and plotting, can 

be done for any converged load step. The solution proce- 

p1 , o 2  , p 3  . . . "n 8 and a 

0 

- 

dure can be continued by restarting the code and specify- 

ing additional load factors. 
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The details of the calculation of I and K are - - .. 
contained in the Appendix. 

3.0 TEXLESP-S USERS GUIDE 

The finite element code TEXLESP-S solves equilibrium 

problems for three-dimensional incompressible hyperelastic 

bodies. 

ing the energy function as either a polynomial in the 

strain invariants or a separable function of the principal 

stretches. In the latter case, the material data are 

input as points on the w' versus A curve. 

The constitutive equations are given by specify- 

The preprocessing and post-processing functions of 

TEXLESP-S have been adapted from the code TEXGAP3D for the 

solution of three-dimensional linear elastic problems. 

Insofar as possible, the differences between these codes 

have been made transparent to the user. That is to say, 

all modeling and post-processing data are identical in the 

two codes. Only the material property descriptions and 

commands directing the solution procedures are different. 

Consequently, the TEXGAP3D users manual can be used, ver- 

batim, for all descriptions of input formats, mesh genera- 

tion commands, element definitions, boundary condition 

specifications and post-processing commands. 

This users' guide contains an overview of the struc- 

ture of the data deck (Section 3.1); a description of 

those data commands that are different from TEXGAP3D data 
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(section 3.2); and a set of example problems which 

illustrate the use of the code (Section 3.3). 

3.1 Structure of Code and Data Deck 

Data deck structures for TEXLESP-S and TEXGAP3D are 

essentially the same. In each code, there are data 

required to 

a) set up the model 

b) solve the problem 

c) post-process the solution. 

While these are typically all contained in a TEXGAP3D run, 

they may occur in separate runs for TEXLESP-S. Using the 

restart capability in TEXLESP-S is often desirable and 

requires some understanding of the code structure. 

Figure 2 shows a large-scale flow diagram of 

TEXLESP-S. It can be noted that any run begins with the 

main routine. From the main routine, control can be 

directed to 

a) SETUP - to define a model 
b) SOLVE - to calculate solutions for various 

load increments 

c) POST - to calculate print and plot 
stresses, strains and/or displacements 

d) RESTART - to resume execution of problems 
begun on a previous run. 
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It will be noted that the file TAPE12 is used by all 

modules. This file contains all data that describe the 

model, i.e., nodal point coordinates, element definitions 

and boundary condition specifications, as well as the 

solutions calculated at each load step. Data are written 

to TAPE12 by SETUP and by SOLVE. Any run which calls 

these modules modifies TAPE12 and, if subsequent process- 

ing of the job is to be performed, the updated version of 

this file must be saved. 

TAPE18 is a file that contains the material data for 

hyperelastic materials whose energy function is written as 

a separable function of the principal stretches. These 

data are read by TEXLESP-S in the SOLVE and POST modules 

but are not modified. This file must be attached to the 

job when SOLVE or POST are to be used. The format of 

TAPE18 is such that the following statements can be used 

to read it. 

READ (18,2010)N 

READ (18,2020)(ALAM(I), I = l,N) 

READ (18,2020)(WP(I), I = 1,N) 

2010 FORMAT(I5) 

2020 FOWAT(6F11.3) 

The data read by these statements are: 

N the number of points on the w '  vs A curve 

ALAM(1) values of A , in ascending order 
WP(1) values of w '  . 
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Data Deck Structure. The structure of data decks for 

TEXLESP-S will vary according to the nature of the job 

being processed. In Figure 3, we show the most general 

structure, i.e., that which is used when a problem is to 

be solved in a single run. The data cards that are given 

explicitly are similar for all such jobs. Data that are 

problem-dependent are not given explicitly in Figure 3. 

Figure 4 shows the structure of a data deck that 

would be used to continue a previously started solution 

and to perform post-processing on it. 

3.2 Description of TEXLESP-S Commands 

Only those data cards that differ from the corre- 

sponding TEXGAP3D data are described here. For complete 

descriptions of the other data, see the TEXGAP3D Users' 

Manual [lo]. The following descriptions explain all data 

cards that differ from those of TEXLESP3D. 

3.2.1 Integration control card. 

This card, which should occur before the SETUP card 

changes the default number of integration points from 14 

to 8. A significant swing in computer time can be 

realized by the use of the SETINT card. 
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3 . 2 . 2  Mate r i a l  property d e f i n i t i o n  c a r d s  

RUBBERS, name, no. 

This  ca rd  d e f i n e s  t h e  m a t e r i a l ,  "name," as material  

number, "no" and s p e c i f i e s  t h a t  it i s  a rubber  e las t ic  

m a t e r i a l  whose energy funct ion i s  de f ined  by t h e  d a t a  on 

TAPEl8. 

Note t h a t  on ly  one such material  can be used i n  a 

problem. 

I I 

RUBBER I ,  name, no, n ,  C 1 0 ,  CO1,  C 2 0 ,  C 1 1 ,  C 0 2  
C30,  C 2 1 ,  C 1 2 ,  C 0 3  

I 

This  ca rd  d e f i n e s  ma te r i a l ,  name, as  m a t e r i a l  number 

"no." The energy funct ion for t h e  material i s  def ined  i n  

terms of  t h e  s t r a i n  i n v a r i a n t s  i n  t h e  fol lowing way, 

depending on t h e  va lue  of n . 
n = 1 U1 = C I O ( I 1 - 3 )  + C 0 1 ( 1 2 - 3 )  

n = 3 U 3  = U2 + C 3 0 ( 1 1 - 3 ) 3  + C 2 1  (11-3)  2 ( 1 2 - 3 )  

+ ( C 0 3  ( I 2 - 3 )  3 + C 2 1 ( 1 1 - 3 )  (12-3) 

These are t h e  only t w o  m a t e r i a l  types  a v a i l a b l e  i n  

TEXLESP-S. 
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3.2 . 3 Grid Generation 

The grid generation commands in TEXLESP-S are 

identical to those in TEXGAP3D. See Section 2.4 of the 

TEXGAP3D Users' Manual for descriptions of these commands. 

3.2.4 Element Definition and Boundary Condition 

Specification 

The element library and element generation commands 

are identical in TEXLESP-S and TEXGAP3D except that the 

singular WEDGE elements are not used in TEXLESP-S. 

All of the boundary condition commands in TEXGAP3D 

are available in TEXLESP-S. In addition, a CLAMP command, 

described below, has been added to TEXLESP-S. 

The element and boundary condition specification 

(with the exceptions noted above) are described in Section 

2.5 of the TEXGAP3D users' manual. 

BC, CLAMP, i, j, k, nside, nset, vx, vy, vz 
I I 

This boundary condition specifies that all of the 

nodes on side, "nside" of element "i, j, k" have specified 

displacements. The values of these displacements are vx, 

w and vz in the x ,  y and z directions 

respectively. Each different set of vx, vy, vz is given 

a number, "nset," the first time it is used. When a given 

set of applied displacements is used subsequently only the 

set number (n set) need be repeated. See example data set 

1 for use of the CLAMP command. 
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3 . 2 . 5 Solution commands 

In TEXGAP3D, the command, SOLVE, has no parameters, 

since only a linear solution is produced. In TEXLESP-S, 

there are parameters on the SOLVE card that control the 

incremental loading and Newton iteration processes. 

"rn SOLVE, jprint, iter, tol, pl, p2, p 3 ,  ..., 

The SOLVE command causes the solution cf the 

equilibrium equations to be performed using the sequence 

of load factors p l r  p2 ,  p 3 ,  ..., p m  . Each solution is 

recorded on TAPE12. If no previous solutions have been 

stored on TAPE12, then these are the first n solutions. 

On the other hand, if a previous run of the problem has 

produced solutions and the current run is a RESTART run, 

then the sequence of solutions produced is recorded fol- 

lowing the solution at which the restart was made. See 

example problem 2 for an illustration of this. 

The parameter, jprint, controls the amount of print 

produced during the solution. Increasing values of jprint 

produce increasing amounts of output. A value of 1 pro- 

duces the convergence summary table and is recommended. 

The maximum number of iterations allowed in a load 

step is equal to "iter." The default value, which is 10, 

is recommended. 
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The parameter, "tol," defines the tolerance to which 

the changes in displacement are compared when determining 

whether the Newton iterations have converged. The default 

value is l o o 4  which is small enough for nearly all 
purposes. The convergence check determines that 

dui < to1 * luil 

for each component of displacement in the model. Here, 

ui is the value of the displacement component and dui 

is the correction to that displacement produced by the 

Newton iteration. 

A summary of the convergence tests is printed for 

each load step. If the iterations should fail to converge 

at any load step, all of the solutions up through the 

previous load step are stored on TAPE12 so that restarting 

can be done from that point. 

3.2.6 Post Processinq 

The post processing in TEXLESP-S uses commands that, 

with two exceptions, are the same as those used in 

TEXGAP3D. All plotting and stress calculation commands 

are as described in Section 2.7 of the TEXGAP3D users' 

manual 

POST, nstep 
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The POST command in TEXLESP-S contains the parameter 

"nstep" which specifies the load step number of the 

solution to be processed. 

REACTION, xmin, pin, zmin, Xmax, ymax, zmax, 
irnin, jmin, kmin, imax, jmax, kmax 

The REACTION command causes the reactions at all 

nodes within the specified (x,y,z) bounds and the speci- 

fied (i,j,k) bounds to be printed. Either or both sets of 

bounds can be omitted, If no bounds are specified, then 

all nodes in the model are processed. 

The reactions that are printed are actually the un- 

balanced nodal point forces (i.e., the difference between 

specified applied loads and the calculated internal 

forces). When equilibrium is exactly satisfied at a node, 

the reactions will be equal to zero, unless the node has 

had displacements specified. When displacements are 

specified, then the actual reaction furnished by the 

support on the model is the calculated value. 

The vector sum of all of the reactions in the 

specified part of the model is also printed. The REACTION 

command is, thus, very useful in determining load-deflec- 

tion data. 
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. 3 . 3  Example Problems 

The example problems presented in this section are 

intended to illustrate the application of TEXLESP-S in a 

typical application. Descriptions of the input data for 

several runs associated with the problem are described 

below. 

The problem to be analyzed is the stretching of a 

thin biaxial test specimen with a rail cross section. The 

specimen is shown in Figure 5 .  This is the same specimen 

for which results are given in Peng's report [ 9 ]  (see Fig. 

A-2 in [ 9 1 ) .  

The separate runs that are described below are: 

Run 1 - Generation and plotting of grid 
Run 2 - Analysis of stretching up to 20% 
Run 3 - Analysis of stretching from 20% to 90% 
Run 4 - Calculation of reactions 
Run 5 - Stress calculation and deformed shape 

plotting. 

It is desirable, although not necessary, to perform 

nonlinear analysis in several stages using the restart 

capability of TEXLESP-S. The use of several separate runs 

allows the user to check intermediate results to make 

sure, for example, that the grid is error free and that 

convergence of the nonlinear solution is taking place. 

For runs 2 through 6, TAPE12 from the prior runs and 

TAPE18 containing material properties are required. 
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Run 1: Generation and P l o t t i n g  of a G r i d  

The first s t e p  i n  genera t ing  a g r i d  f o r  TEXLESP-S i s  

t o  ske tch  t h e  g r i d  and t o  a s s i g n  (I ,  J, K) node numbers. 

Figure 6 shows such a sketch of one-eighth of t h e  spec i -  

men. I n  t h i s  g r i d ,  t h e  I,  J, K d i r e c t i o n s  are i n  t h e  x, 

y ,  z d i r e c t i o n s  r e spec t ive ly .  Since t h e  elements  are 

ordered,  for  s o l u t i o n  purposes, by vary ing  I then  J 

then  K it i s  e s p e c i a l l y  important  t o  l e t  I vary  i n  t h e  

d i r e c t i o n  o f  fewest elements (one or  t w o  i n  t h i s  ca se )  and 

K i n  t h e  "long" d i r e c t i o n  ( 5  elements  i n  t h i s  case). It 

w i l l  be noted t h a t  severa l  nodes have been i d e n t i f i e d  on 

t h e  sketch.  

The d a t a  deck f o r  t h i s  run  i s  given i n  Figure 7. 

Following t h e  t i t l e  card, t h e r e  i s  a SETINT command 

(Sect ion 3.2.1). Then t h e  SETUP command c a l l s  t h e  

pre-processing overlay.  

The material model i n  t h i s  problem i s  given by t h e  

w '  ver sus  X . da t a  which are contained on TAPE18. The 

RUBBERS ca rd  s p e c i f i e s  t h i s  and i d e n t i f i e s  t h e  m a t e r i a l  a s  

material number 1. 

The g r i d  generat ion proceeds by d e f i n i n g  a l l  o f  t h e  

nodes on t h e  p lane  z = 0 which i s  also K = 1 . FACE, 

ARC, POINT and CONNECT commands a r e  used t o  d e f i n e  t h e s e  

po in t s .  Af t e r  a l l  o f  t h e  K = 1 p o i n t s  have been 

def ined ,  t h e  NORMAL command i s  used t o  d e f i n e  other K 

planes.  A f t e r  a l l  nodes have been def ined ,  t h e  element 
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definition begins. The elements in this problem are 

BRICKH and PRISMH elements. The looping features of 

TEXLESP-S are used in defining the elements. 

The boundary conditions on the one-eighth model are 

Symmetry (SLOPE) on the plane y = 0 which is face 5 

of elements (1, 1, K). 

Symmetry (SLOPE) on the plane x = 0 which is face 4 

of elements (1, 1, K) and (1, 3, K). 

Symmetry (SLOPE) on the plane z = 3.75 which is face 

3 of elements (1, 1, 9 )  and (1, 3, 9) and face 4 of 

the PRISMH, (3, 3, 9). 

All displacements specified (CLAMP) on the plane 

y = - 7 5  . This is face 2 of elements (1, 3, K )  and 

face 1 of the PRISMH elements (3, 3, K). The values 

of displacements specified in the CLAMP command 

(Section 3.2 .4)  are u = 0, v = -75, w = 0. Note 

that this corresponds to a stretch of 100%. This 

value would be achieved by a load factor of 1.0. 

After the elements and boundary conditions have been 

specified, the preprocessing phase is ended. 

In order to examine the grid generation results 

before attempting an analysis, this run ends with a call 

to the post processor to plot the grid. The plot produced 

by this call is shown in Figure 8. In addition to the 

plot, a large amount of printed output is generated, from 

which detailed checking of nodal coordinates, element 
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connectivities and boundary condition specification can be 

done. 

The data generated by this run are written on TAPE12 

so that subsequent runs need not repeat the grid genera- 

tion process. 

Run 2: Analysis of Stretchinq Up to 20% 

Although final results may be desired only for a 

couple of values of stretch, we choose to increnent the 

load rather slowly at first. This strategy has the 

benefit of producing more complete load-deflection data. 

More significantly, it is often the case that smaller load 

steps are necessary in the early stages of loading in 

order to achieve convergence. In the present example, for 

instance, a load increment from 0 to 20% will not con- 

verge while steps from 15% to 20% as well as from 20% to 

40% do converge. 

Examination of the load-deflection curve for this 

example, Figure 9, indicates a rapid change in behavior 

around a stretch of 10%. It is this behavior that is 

reflected in the need for initially small load steps. 

The data set for this run is shown in Figure 10. 

This run requires attachment of TAPE12 from Run 1 and 

TAPE18 containing the material data. The only output from 

this run describes the convergence of each load step. The 

resulting solutions are accumulated on TAPE12. 
-_ I 
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Run 3: Analysis of S t r e t c h i n g  from 20% t o  80% 

Af te r  having determined, from t h e  r e s u l t s  of Run 2 ,  

t h a t  t h e  s o l u t i o n  i s  converging s a t i s f a c t o r i l y ,  t h i s  run  

i s  used t o  cont inue  t h e  s o l u t i o n  for subsequent l oad  

s t eps .  Note t h a t  t h e  r e s t a r t  ca rd  c o n t a i n s  t h e  s p e c i f i c a -  

t i o n  of t h e  load s t e p  beyond which t h e  next  SOLVE command 

w i l l  c a l c u l a t e  so lu t ions .  TAPE12 and TAPE18 are requi red .  

Run 4: Calcula t ion  of Reactions 

I n  t h i s  run,  t h e  code i s  r e s t a r t e d  and t h e  s o l u t i o n s  

a t  load s t e p s  1, 2 and 3 are pos t  processed. The REACTION 

command produces node-by-node r e a c t i o n s  f o r  a l l  nodes 

wi th in  t h e  xyz bounds spec i f i ed .  These a r e  no t  as  u s e f u l  

as t h e  t o t a l  r e s u l t a n t s  t h a t  are t h e  sum of t h e s e  nodal 

r eac t ions .  The region s p e c i f i e d  i n  t h i s  run inc ludes  t h e  

p lane  y = . 75  b u t  n o t  t h e  p lane  y = 0 . Thus, t h e  y 

r e a c t i o n  p r i n t e d  i s  t h e  t o t a l  app l i ed  load on one f o u r t h  

o f  t h e  t o p  g r i p .  The t o t a l  app l i ed  load i s ,  o f  course ,  

fou r  t i m e s  t h i s  value.  

Figure 9 shows t h e  load  d e f l e c t i o n  d a t a  p l o t t e d  by a 

s e p a r a t e  p l o t t i n g  program. 

Run 5: Stress Calcula t ion  and Deformed Shape 

P l o t t i n q  

To o b t a i n  va lues  of displacement ,  stress and/or  

s t r a i n  a t  va r ious  loca t ions  i n  t h e  model, t h e  p o s t  

p rocess ing  commands t h a t  are common t o  TEXLESP-S and 

TEXGAP3D a r e  used. I n  t h i s  example, w e  c a l c u l a t e  d i s -  
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placements, stresses and strains for load step 3. The 

data set shown i n  Figure 10 also produces a deflected 

shape plot. 



37. 

P.eferences 

1. Men, J. T., Finite Elements of Nonlinear Continua. 
New York: McGraw-Hill (1972) 

2. Cescotto, S. and Fonder, G., "A Finite Element 
Approach for Large Strains of Nearly Incompressible 
Rubber-Like Materials," Int. J. Solids and Structs., 
V. 15, 589 (1979). 

3. Aly, A. S., "A Finite Element Analysis for Problems 
of Large Strain and Large Displacement," TICOM 81-14, 
Austin (1981). 

4. Miller, T. H., "A Finite Element Study of Instabili- 
ties in Rubber Elasticity," TICOE? 83-2, Austin 
(1983). 

5. Hibbitt, H. D., Karlessen, B. and Sorensen, P., 
"ABAQUS Users' Manual," H. K. S., Inc., Providence, 
RI (1984). 

6. Becker, E., Collingwood, G. and Sato, T., "Users 
Manual for the TEXLESP Computer Code," AFRPL 
TR-84-085, V. 3 (1984). 

7. Valanis, K .  C. and Landel, R. F., J. Appl. Phys., V. 
38, 2997-3002 (1967). 

8. Ogden, R. W., "Large Deformation Isotropic 
Elasticity," Proc. Roy. SOC. Lond. A328 567-583 
(1972) . 

9. Peng, S. T. J., "Nonlinear Multiaxial Finite 
Deformation Investigation of Solid Propellants," 
AFRPL TR-85-036 (1985). 

10. Becker, E., Dunham, R. and Collingwood, G., "TEXGAP3D 
Users Manual," AFRPL TR-78-86 (1978) . 

11. Zienkiewicz, 0. C., The Finite Element Method in 
Engineering Science. New York: McGraw-Hill (1 974) . 



? .  

3 8 .  

Figure 1. Deformation of a Neighborhood N i n t o  n 



39. 

Figure 2. Schematic of TEXLESP-S 
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$TITLE 

SETINT 

SETUP 

(Material property data  cards)  

END 

(Nodal p o i n t  generation data cards )  

END 

(Element d e f i n i t i o n  and boundary condi t ion  data  

cards)  

END 

SOLVE 

POST 

(Post processing commands) 

END 

STOP 

Figure 3 .  Data Deck Structure  for Complete Run 

-- : . 



$TITLE 

RESTART 

SOLVE 

POST 

(Post  process ing  commands ) 

END 

STOP 

Figure 4 .  Data Deck Structure 

for Post Process ing  Run 
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%RUN 1 GRID GENERQTION FO? T+IN UNCRFICKED BXGXIRL E N S I L E  S9CT:fiEY 
SETINT 
SETUP, 1 
RUBBERS, 1,l 
END, MQT 
FfiCE-L, 1, 1, 1, 1 9 3 9  3 9  1 
0, 0 9  09 0625, QI ,  B, 8625, ale, 0, QI,  m 313, QI 
FFICZ-L, 1, 1, 3 9  1 9 3 9  5 ,  1 
QI ,  rn 31290, . 8625,. 318, s 86E!S,.759 0 9  09 .73 ,0  
RRC-L, 1,3,5, l , S ,  5,  1, , 0625,. 7 '5 ,8 , .  5 , .  75 ,8  
POINT, 1 9 4 9  49 1, 1903, 631798 
POINT, 1, 4, 1, 1, rn 190390, 0 
POINT, 195, 1, 1, 5q0, C3 
CONNECT, 1, 4, 1, 1 9 4 9  4, 1 
CONNECT, 1,S, 1, 1,5,5, 1 
NORMFIL, 2, 1, 1, 1,3,!5, 1, rn 25 
?!DRMFIL, & I ,  1,3,!5,5,3, i?. 75 
NOi?MRL, E ,  1, 1, 9, 59 §, 9, 75 
END, GRID 
KLOOP, 5 ,  2 
JLOOP, 2, E' 
BRICMH, 1, 1, 1, 1 
EC, SLOPE, 1, 1, 1 , 4  
JEND 

EC, SLOPE, 1, 1, 1,5 
PRISMH, 1,3,3, 175, 5 ,  l , S , 9 ,  1 

BC, CLFIMP, 1 9 3 7  1 9 2 ,  1,8, 759 a 
PC, CLFIMP, 393, 1, 1, 1 
KENO 
JLOOP, B, 2 

JEND 

END, ELEMENTS 
POST, SETUP 

RNGLES, 0,0,8 
END r. 

STOP 

EC, SLOPE, I, 1,9,3 

EC, SLOPE, 3,3, '3,4 

PLOT, ELEMENTS, 9 -1 9 - 1  9 -1,2, E', S 

Figure 7 .  Data Deck for Grid Generation Run 
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. 

Figure 8 .  Grid Plot of FEM 
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%RUN 2 FINQLYSIS O F  STRETCHING UP TO 28% 
RESTRRT, SETUP 

STOP 
SOLVE, I,, 1.03, 1,. 15, 2 

BRUN 3 RNRLYSIS OF STRETCHING FROM i?0% TO 80% 
RESTRRT, LRST 
SOLVE, 1, , , .3,. 6,. 8 
STOP 

%RUN 4 CRLCULRTION OF RERCTIONS 
RESTRRT 
POST, 1 
RERCTION, -1,. 7 ,  - l , S ,  5 , s  
POST, 2 

POST, 3 

END 
STOP 

RERCTION, -1  1 7 ,  1,5,5,5 

REQCTION, -1 , 7 ,  -1  S, 5 ,  5 

$RUN S STRESS CRLCULRTION FIND PLOTTING DEFORMED SHRPE 
RESTART 
POST, 3 
BLOCK,,, , - l , - l , - l , Z , S , S  
OPTION, 

RNGLES, 0 , 0 , 0  
END 
STOP 

PLOT, DEFORMED, 9 -1  9 -1 -1 1 1 9 3 9  4, 6 

Figure 10. D a t a  Decks  f o r  R e s t a r t  Runs 
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CALCULATION OF ELEMENT MATRICES 

For a Rivlin polynomial material, the contribution of 

an element to the internal energy of the body is 

u(I1,I2,J) + P(J-1) dv 
ne 

where the energy has been augmented to include the incom- 

pressibility constraint (J-1 = 0 ) .  The contribution of 

the element to the right-hand side (or load vector) is 

-61 . 
all the nodal displacement variables in the element (x:) 

and the pressure variables (py). Therefore, 

The variation in the energy is obtained by varying 

where 

(note : I3 denotes J I det(F)) .. 

My = fin,te element ,nterpolators for the pressure. 

The contribution of the element to the tangent stiffness 

matrix is d(6I) and is given by 
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+ My GpYdx!ldv . 
axi ax B 3 

+ Mn % 6xidp 
j 

The first and second derivatives of the energy density 

function ( u , ~  and u , ~ ~  ) can be obtained explicitly from 

the polynomial form of the energy function for Rivilin 

materials or as outlined in section 2.2 for materials 

defined by a w '  vs. X curve. 

The invariants are complicated functions of the nodal 

point displacements (xi) and derivatives of t h e  invariants 

are best obtained by considering the derivatives of the 

B 

deformation gradient (F) , the left deformation tensor (B) 
and using the chain rule. Substituting the finite element 

- * 

interpolation of the nodal displacements into the defini- 

tion of the deformation gradient gives 

Y 

= Ni xi (where Ni E - aN ) . 
a 'n 

The first and second derivatives of F are: - 
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a axi 

where dim 

a 
Nn6im 

The l e f t  

Bmn 

= o  

is  t h e  Kronecker d e l t a  func t ion .  

The f irst  and 

deformation t e n s o r  i s  def ined  by 

= F  F 
mP nP 

second d e r i v a t i v e s  of B a r e  - 

a 
(Fmp 6 i n  + Fnp6im)Np 

('jrn'in 

('jm'in 

6 ) N ~ N $  + ' jn  i m  p p 

a 8  + 6 6 .  )6 N N 
j n  =m pq P q . 

The d e r i v a t i v e s  of t h e  i n v a r i a n t s  (11,12,J) can now 

be determined: 

1 1 z 6  B mn mn 

- = 6  all - aBmn 
a m n a  axi axi 

= 2F. Na 
1P P 



! 
f '  

a-1 = N B  P Pi 

T h e  second invariant is more complicated. 

then 

= B  B mr rm 

T h e  derivatives of il are : 

aZ, 
A - =  

2Bmr(Fmp6ir + F 6. )Na rP lm p 

4B. E' Na 1m mp P 

- a i l  a Bim - 9 1  a Fm N; 
axyax8 j ax + Bim ax = 4[Fmp - I3 

j j 



T where C Z F F i s  t h e  r i g h t  deformation t enso r .  

The 

and 

The 
-_ 

second i n v a r i a n t  i s  de f ined  by 
1 2  - I2 = $I1 - I l l  

i t s  d e r i v a t i v e s  a re :  

a Ii af i  
- 1 -1 = z(211 - - a12 
ax, a ax, ax, a a 
I I I 

= 11(2F. N u )  - 2B. F Nu 
1P P 1 m  mP P 

a 
= 2(Fip11 - BimFmp)Np 

a-2 = N B  
P Pi 

= 2[2F- F - F. F + ( I 1 d i j  - B. .)6 XP js JP i q  1 3  P9 

a 8  
P9 1 3  P 9 

- C 6 . . ] N  N 

determinate  of F is def ined  as - -_ 
A I A 

J d e t ( F )  = FllCll + F12C12 + F13C13 
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where Cij is the cofactor of Fij . 
The first derivative of J is 

a-3 = N B  P Pi 

where F-' is the inverse of the deformation gradient. 

In order to take the second derivatives of J it is 

necessary to write the first derivatives explicitly. 

- 

The second derivatives are: 

= o  a2J 
axaaxe 
i j  

if i = j  
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otherwise, 

or 

Let RS denote the component of the elemental right- 

hand side vector in the i th direction for node a and 

R' 

Y th pressure variable. Then, using the expressions for 

the derivatives of the invariants 

denote the component of the vector corresponding to the 

Ry = - M y ( J  - 1) dv 
ne 
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Similarly, let KY! denote the component of the tangent 

stiffness matrix coupling the degree of freedom in 

direction i at node a with the degree-of-freedom in 

direction j at node B , KYn denote the component 

coupling the n th pressure degree of freedom with the 

degree-of-freedom in direction i at node a , and KYn 

denote the component coupling the y th and n th pressure 

degrees of freedom. The stiffness matrix is then 

IN a 8  N dv K a 8  = I IU,ka  gk pi g i  qj + U'k Hk ijpq + PHijpq p q ij 
ne 

K;" = J M" E3. Na dv 
Pl P ne 

KYn = 0 . 


